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ABSTRACT

The concept of attraction has been shown to play a basic role in the synthesis of
supervisors for stabilizing discrete-event processes. In this paper we define and
investigate optimal attraction - optimal in the sense that the cost (or distance) of
the convergence path is as small as possible with respect to some distance
measure. We find conditions for the existence of supervisors achieving optimal
attraction, and provide efficient algorithms for their synthesis.

Key words: discrete-event processes, supervisory control, stabilization, attraction, optimal
supervisors.

1. Introduction

The concept of attraction (or stabilization) was introduced in [1], where it was shown to
play an important role in the synthesis of supervisors for stabilizing discrete-event processes.
Intuitively, the notion of attraction is concerned with the possibility of driving a process
(modeled by a state machine or a directed graph) from arbitrary initial states to a prescribed
subset of the state set and then keeping it there indefinitely. A similar concept was introduced
independently in [2].

In this paper, we are interested in the problem of finding supervisors that achieves optimal
attraction in the sense that the cost (or the distance) of the convergence path is as small as
possible with respect to some distance measure. To this end, the digraph’s edges (representing
events) are assigned weights (lengths), and, roughly speaking, the cost is defined as that of the
most expensive execution which may be selected by the process (under control) in its progress
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from an initial state to a target state. It turns out that, in general, there need not exist a supervisor
that achieves minimal-cost attraction with respect to an arbitrary initial state. However, as will
be shown later, under suitable conditions (depending on the process’ structure and its edge
weights) such an optimal supervisor exists, and we shall provide efficient algorithms for its
synthesis.

The paper is organized as follows. In the remainder of this section we give some
terminology and notation. In section 2, we give an informal description of the optimal attraction
problem. Sections 3 and 4 deal with the existence and synthesis of optimal supervisors for
processes whose edge lengths are positive, whereas the general case (i.e., when negative lengths
are allowed) is discussed in section 5.

1.1 Processes and Supervisors

A detailed discussion of various aspects concerning attraction in discrete-event processes
appears in [1]. We recall here only facts needed for the ensuing development. LetΣ be a finite
alphabet. Aprocess overΣ is modeled as a finite weighted directed graph (digraph)G = (V , E)
whereV is a set of states (vertices) andE ⊆ V × Σ ×V is a set of edges. An edge ofG is thus an
ordered triplee = (v , σ , u) ∈ E and it is said to be directed fromv to u. Each edgee ∈ E is
assigned a lengthl(e). If (v , σ , u) ∈ E we say thatv is apredecessor of u andu is asuccessor of
v. For v ∈ V andΩ ⊆Σ , let δG(v ,Ω) denote the set of allv’s successors thatG can reach by
executing a transition labeledσ ∈ Ω . That is

(1.1)δG(v ,Ω) = { v ′ ∈ V | (v , σ , v ′) ∈ E ∧ σ ∈ Ω } .

For a singletoneΩ = { σ } we write δG(v , σ). The processG is assumed to be deterministic in
the sense that |δG(v , σ) | ≤ 1 for everyv ∈ V andσ ∈ Σ (here |. | denotes the cardinality of.).

A path is a finite string of edgess = (vo , σ1 , v1)(v1 , σ2 , v2) . . . (vn−1 , σn , vn) with which
is associated the unique (state)trajectory vo , v1 , . . . , vn. A closed trajectory (i.e.,vn = vo) in
which no state (except the start and end states) appears more than once is called acycle. A
digraph without cycles is calledacyclic. The length of a paths, denotedl(s), is the sum of its
edges’ lengths.

A statev is reachable from a stateu if there exists a path fromu to v. A statev is said to be
reachable from a subset of statesA ⊆ V if v is reachable from at least one state inA. Thereach of
A in G, denotedrG(A), is defined as the set of all states inG that are reachable fromA. We say
that a statev is connected toA ⊆ V if there existsu ∈ A such thatu is reachable fromv. The
processG is calledA−connected if eachv ∈ V is connected toA.

For a statev ∈ V , G−v denotes the subprocess ofG obtained by deletingv and all edges
incident onv from G. If e is an edge inG, thenG−e is a subprocess ofG obtained by deletinge
(without its end states) fromG.

Let Gi = (Vi , Ei) , i=1,2 be two processes overΣi , i=1,2 respectively. Theconcurrent
composition of G1 andG2 is denotedG1 ||G2, and defined as
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G1 ||G2 = (V , E) ,

whereV = V 1 × V 2 , Σ = Σ1∪Σ 2 and E ⊆ V × Σ ×V satisfies the condition that

((v1 , v2) , σ , (u 1 , u 2)) ∈ E iff

�
�
�
�
� (v2 , σ , u 2) ∈ E 2 andv1 = u 1

(v1 , σ , u 1) ∈ E 1 andv2 = u 2

(v1 , σ , u 1) ∈ E 1 and (v2 , σ , u 2) ∈ E 2

if σ ∈ Σ 2−Σ1

if σ ∈ Σ 1−Σ2 .

if σ ∈ Σ 1∩Σ2

It can be shown that concurrent composition is an associative and commutative operator (up to
isomorphism due to permutation of labels in the composite state space).

As in [3-5] we assume thatΣ = Σc∪Σ u; controlled and uncontrolled alphabets (events).
Clearly a similar classification is induced onE (i.e., E = Ec∪ Eu). A supervisor for G is a map

S : V→2ΣC , and theclosed-loop process,S/G, is defined as the subprocess (V , E S) of G satisfying
the condition that

(1.2)( ∀ e = (v , σ , u) ∈ E) e ∈ E S iff σ ∉ S(v).

In other words, at each statev ∈ V the supervisor specifies a subset of controlled events that are
disabled.

1.2 Attraction

Let A , B ⊆ V , E ′ ⊆ E. The subsetA is E ′-invariant if there is no edge inE ′ leading out of

A. A is astrong attractor for B w.r.t. G, denotedA ⇐
G

B if the following conditions are satisfied:

(a) A is E-invariant.

(b) Each statev ∈ rG(B) is connected toA.

(c) G has no cycles inrG−A(B).

The notion of strong attraction has the following interpretation: ifA ⇐
G

B then G, initialized at
statev ∈ B, always reachesA within a finite number of state transitions and remains inA.

We say thatA is aweak attractor for B w.r.t. G, denotedA ←
G

B, iff there exists a supervisor

S such thatA ⇐
S/ G

B. It was shown in [1] that for eachA ⊆ V there exists a unique maximal set
weakly attracted byA. This maximal set is denotedΩG(A) and called theregion of weak
attraction of A w.r.t. G. If ΩG(A) = V, we say thatA is aglobal weak attractor.
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2. Motivation and Problem Definition

Fix G = (V , E) , A ⊆ V such thatG−A is acyclic. For eachv ∈ V−A, let LG(v , A) be the set
of all paths of G of the form s=(vo , σ1 , v1)(v1 , σ2 , v2) . . . (vn−1 , σn , vn) such thatvo = v,
vn ∈ A andvi ∉ A for all i=0,1, . . . , n−1. That is,s ∈ LG(v , A) iff s starts atv, ends inA and
every state visited bys, except for its end state, is not inA. The distance of v from A w.r.t. G,
denoteddG(v , A) is defined as the length of a paths ∈ LG(v , A) whose length is maximal, i.e.

(2.1)dG(v , A) =max { l(s) | s ∈ LG(v , A) } .

Notice thatLG(v , A) is finite sinceG−A is acyclic. If v ∈ A, we definedG(v , A) = 0, and if
LG(v , A) = ∅ we writedG(v , A) = ∞.

Example 2.1 Let G = (V,E) be the process described in Figure 2.1. Here,
V = { vo , v1 , v2 , v3 , v4 } and E = { ( vo , ϕ , v1) , (v1 ,ψ , vo), . . . } . Associated with each
edgee is a lengthl (e); thus, e.g.,l((v2 , γ, vo)) = 1. With the former notation we have

LG(v3 , A) = { ( v3,α,v1),(v3,β,v2)(v2,γ,vo),(v3,ρ,v4)(v4,δ,v2)(v2 , γ, vo) }

and

dG(v3 , A) =max { 4 , 2+1 , 1+3+1 } = 5

�

Example 2.2 Consider a small manufacturing system, depicted schematically in Fig. 2.2,
consisting of two workstations (WS) and a Buffer (B). WS1 (see Fig. 2.3(a)) takes a workpiece
(eventα1), and either successfully completes processing and passes the workpiece to the buffer
(eventβ1); or returns to its idle state (I1) and discards the workpiece (eventγ1). WS2 (see
Fig. 2.3(b)) either takes a workpiece fromB and discards it (eventγ2); or takes a workpiece for
processing (eventα2). In the latter case, the eventβ2 indicates that WS2 has successfully
completed processing. The one slot buffer (see Fig. 2.4) has three states: EMPTY(E), FULL(F)
and ERROR(ER). The current content of the buffer is suitable for further processing by WS2
only if it has been passed to the buffer while being in its EMPTY state. So, state ER indicates
that the current content of the buffer is faulty.

The concurrent operation of WS1, WS2 and B, denoted by the processG=(V,E), is given
by G =WS 1 ||B ||WS 2. The problem is to synthesize a supervisorS which guarantees thatG will
always reach the target setA = { ( I1 , E , I2) } in minimal cost (or distance); in fact, we are
mainly concerned with the ‘recovery’ ofG from error states (i.e.. states of the form (. , ER ,.)). �

In general, we shall be interested in the following issues:

(1) Does there exist a supervisorS : V → 2Σc such that for eachv ∈ Ω G(A), dS/ G(v , A) is
minimal?
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(2) If the answer for (1) is positive, does there exist a supervisorS that solves it and is
minimally restrictive in the sense that for every supervisorS ′ solving (1),

∀ v ∈ Ω G(A) , S(v) ⊆ S ′(v)

(3) When supervisors exist, find efficient algorithms.

We tackle these issues in the following section.

3. Existence of minimally restrictive optimal supervisors

In the sequel we assume (for simplicity) that every weak attractor is global. However the
results are readily extended for general weak attractors.

Fix A ⊆ V to be a global weak attractor, and defineΨ to be the set of all supervisors

S: V→SΣc such thatA is a global strong attractor w.r.t.S/G (i.e., A ⇐
S/ G

). Notice thatΨ is
nonempty (sinceA is a global weak attractor) and finite (sinceV andΣc are finite sets). For each
v ∈ V, let m (v , A) denote theminimal distance of v from A, which can be obtained under control,
i.e.,

(3.1)m(v , A) =min { dS/ G(v , A) | S ∈ Ψ } .

The minimal distancem(v , A) is well defined sinceΨ is a nonempty finite set. A natural
question that arises is whether there existsS ∈ Ψ such that

(3.2)( ∀ v ∈ V) dS/ G(v , A) =m(v , A) .

Such a supervisor will be calledoptimal.

In general, given a global weak attractorA, we have the following attraction problems:

AP: Synthesize a supervisorS ∈ Ψ (i.e. a supervisorS satisfyingA ⇐
S/ G

).

OAP: Synthesize (if possible) an optimal supervisorS ∈ Ψ (i.e.,A ⇐
S/ G

andS satisfies (3.2)).

SinceA is a global weak attractor, AP is obviously solvable. A solution for AP was given in [1],
and it is, in general, not unique. In what follows we show that OAP is solvable provided all edge
lengths are positive, which will be the case throughout this and the next section.

For eachv ∈ V let Sv be a supervisor such that

(3.3)A ⇐
Sv /G

{ v } and dSv /G (v , A) =m(v , A) .

That is,Sv achieves strong attraction ofv from A, with minimal distance. In this case we say that
Sv is optimal relative to v. Notice that it is not necessarily true thatSv is optimal relative to other

states inV. Define the supervisorS : V → 2Σc according to
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(3.4)( ∀ v ∈ V) S (v) = Sv(v) ,

whereSv satisfies (3.3). That is,S selects the ’local’ evaluation ofSv at statev for eachv ∈ V.
The following lemmas state thatA is a global strong attractor w.r.t.S/G, and thatS is optimal.

Lemma 3.1: A ⇐
S/ G

.

Lemma 3.2 For eachv ∈ V,

dS/ G(v , A) =m(v , A) .

The following proposition is an immediate consequence of lemmas 3.1 and 3.2.

Proposition 3.3 Assuming all edge lengths are positive, OAP is solvable.

It turns out that, in general, OAP, as well as AP, has many solutions. If, however, one
would prefer a minimally restrictive solution, in the sense that it disables as few events as
possible, OAP has such a solution, whereas AP does not necessarily have. To illustrate the latter

observation, letΦ be the set of all supervisorsS : V → 2Σc , and letΨo ⊆Ψ be the set of all

supervisors that solve OAP (notice that proposition 3.3 implies thatΨo is nonempty). We define
the operation ∧ (conjunction) onΦ as follows. For everyS 1 , S 2 ∈ Φ and everyv ∈ V,

(S 1 ∧ S 2)(v) = S 1(v) ∩ S 2(v) .

Also define <∼ to be a partial order onΦ satisfying the condition that

S 1 <∼ S 2 iff ( ∀ v ∈ V) S 1(v) ⊆ S 2(v) .

It is clear from (1.2) that ifS 1 <∼ S 2 thenS 1 disables no more events than doesS 2. Furthermore,
it can be shown thatΦ is a complete semilattice, partially ordered by <∼ and with meet

operation the conjunction of supervisors. The least element ofΦ, S min : V → 2Σc , is given by

∀ v ∈ V, S min(v) = ∅ .

Definition 3.4 A least element ofΨ(Ψo) will be called aminimally restrictive solution of AP
(OAP).

The following example shows that AP need not have a minimally restrictive solution.

Example 3.1 Let G be the process depicted in Figure 3.1, letS 1 be a supervisor that disablesγ
at stateu, and letS 2 be a supervisor that disablesβ at statev. Both S 1 andS 2 solve AP, but none
of them is minimally restrictive in the sense of definition 3.4. In fact,S 1, as well asS 2, are
minimal elements ofΨ (i.e., Si satisfies the condition that for everyS ∈ Ψ , S <∼ Si implies
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S = Si, i=1,2). Finally, notice that the conjunction supervisorS 1 ∧ S 2 is not a solution of
AP. �

As regards OAP, a minimally restrictive solution exists, as we show next. The following
lemma states that ifS 1 andS 2 are solutions of OAP then their conjunction is a solution of AP.

Lemma 3.5 Let S 1 , S 2 such that fori=1,2 A ⇐
Si /G

and

( ∀ v ∈ V) dSi /G (v , A) =m (v , A) .

Then

A ⇐
(S1 ∧ S2)/G

.

The next lemma claims that the conjunction of two solutions of OAP is optimal, i.e.

Lemma 3.6 Let S 1 andS 2 as in lemma 3.5. Then for everyv ∈ V

d (S1 ∧ S2)/G (v , A) =m(v , A) .

The consequence of proposition 3.3 and lemmas 3.5 and 3.6 is

Proposition 3.7 The classΨo of supervisors solving OAP is nonempty and closed under∧ .

Notice that contrary to proposition 3.7,Ψ, the class of all supervisors solving AP, is not

closed under ∧ , as was shown in example 3.1. By proposition 3.7, the finite classΨo has a
least element, whence OAP has a minimally restrictive solution. In example 3.1,S 2, the
supervisor that disablesβ at v and nothing elsewhere, is the minimally restrictive optimal
supervisor.

4. Effective Algorithm for Solving OAP (positive edge weights)

In developing an effective algorithm for solving OAP we need the following definitions.
Let V ′ ⊆ V. We say thatv ∈ V is V ′-attractable if v ∉ V ′, v is a predecessor of a state inV ′ and
every uncontrolled edge ofG leavingv ends inV ′, i.e., if v ∈ V−V ′ and

(4.1)(i) V ′ ∩ δG(v , Σ) ≠ ∅ , and

(4.2)(ii) δG(v , Σu)≠ ∅ ⇒ δ G(v , Σu) ⊆ V ′ .

Also, we say thatv ∈ V is (V ′,G)-directed if v ∈ V−V ′ andδG(v,Σ) ⊆ V ′, (i.e. v is a predecessor
of a state inV ′ and every edge ofG leaving v ends inV ′). It is easily seen that ifv is V ′-
attractable, there exists a supervisorS such thatv is (V ′ , S/G)-directed (i.e.δS/ G(v , Σ) ⊆ V ′). If
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β , ρ ∈ Σ c in example 2.1,v2 and v3 are A-attractable, whereas onlyv2 is (A,G)-directed.
Finally, letE(v) denote the set of all edges (ofG) leavingv. Then we have the following

Proposition 4.1 The following algorithm computes the minimal distancesm (v , A) and
synthesizes a solution for OAP.

Algorithm 4.1

(1) Let Uo = A, let

λ(v) =
�
�
�∞
0

if v ∈ V−A

if v ∈ A

and let

(4.3)S(v) =
�
�
� ∅

{ σ ∈ Σ c |δG(v,σ) ⊆| A }

if v ∈ V−A

if v ∈ A
.

Iterate steps (2)-(4) untilUj+1 =Uj.

(2) For eachUj-attractable statev compute

ρ(v) =
�
�
� max { λ(v ′)+l(e) |e=(v,σ,v ′) ∈ Eu ∩ E(v) }

min { λ(v ′)+l (e) |e=(v,σ,v ′) ∈ E (v) , v ′ ∈ Uj }

otherwise

if Eu ∩ E (v) = ∅
(4.4b)

(4.4a)

(3) Let Vj be the set of all statesv whoseρ(v) is minimal (with respect to all otherUj-
attractable states).

(4) Let Uj+1 =Uj ∪ { Vj } , and for all v ∈ Vj set λ(v) = ρ(v) ;

(4.5)S (v) = { σ ∈ Σ c | ——
—

� e = (v,σ,v ′) ∈ E(v) s.t. λ(v ′)+l(e) > λ(v) } .

(5) Upon termination,S is the optimal solution of OAP, andm (v , A) = λ(v), ∀ v ∈ V.
�

This algorithm terminates in at most |V | iterations, sayk iterations. In each iterationj, a
Uj-attractable statev (with minimal valueρ(v)) is chosen (step (3)). Thus it can be shown ([1,
section 5]) that upon terminationUk = ΩG(A) = V (since A is assumed to be a global weak
attractor). The following lemma states that the supervisor defined by (4.5) is a solution of AP.

Lemma 4.2 A is a global strong attractor w.r.t.S/G (i.e. A ⇐
S/ G

).

Next we show thatS solves OAP and that the minimal distances are given byλ(v) , v ∈ V.
To this end, assume, throughout the following lemmas, that for allv ′ ∈ Uj , j ≤ k
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m(v ′ , A) = λ(v ′)

= dS/ G(v ′ , A) .

whereS is the supervisor specified in step (4) of thej-th iteration, and consider a statev ∈ Vj (see
step (3)). The following lemma states thatS implementsλ(v), i.e., λ(v) is the distance ofv from
A w.r.t. S/G.

Lemma 4.3

λ(v) = dS/ G(v , A) .

Next we claim that for eachUj - attractable statew, ρ(w) is a lower bound on the distance
of any supervisor that connectsw to Uj directly.

Lemma 4.4 Let w be aUj-attractable state. Then

dS ′ /G (w , A) ≥ ρ(w)

for anyS ′ solving AP such that

δS ′ /G (w,Σ) ⊆ Uj .

Using lemmas 4.3 and 4.4, it can be shown thatρ(v) is indeed the minimal distance ofv
from A, i.e.,

Lemma 4.5 Let v ∈ Vj (see step (3) ). Thenρ(v) =m(v , A).

Now proposition 4.1 follows from lemmas 4.2 and 4.5. According to proposition 4.1,
algorithm 4.1 provides a solutionS for OAP. This solution, as we show below, is minimally
restrictive. That is, ifS ′ is another supervisor solving OAP then

( ∀ v ∈ V) S(v) ⊆ S ′(v) .

We shall need the following lemma. Let {λ j } j=0
k , λo =0, k ≤ |V | , be the sequence consisting

of the valuesλ(v) of statesv chosen in step (3) of algorithm 4.1. That is, ifv ∈ Vj thenλ j :=λ(v).

Lemma 4.6 The sequence {λ j } j=0
k is monotonic non-decreasing, i.e.

λ j ≤ λ j+1 , j=0,1, . . . , k−1 .

Based on lemma 4.6, the following proposition is easily proved.

Proposition 4.7 The supervisorS constructed by algorithm 4.1 is the minimally restrictive
solution of OAP.
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Let us now consider the complexity of algorithm 4.1. As we pointed out above, this
algorithm terminates in at most |V | iterations. In each iterationj, ρ(v) is computed for eachUj-
attractable statev (see step (2)); then a statev with minimal valueρ(v) is chosen. In fact, the
selectionv in step (3) will not change even ifv is chosen from the set of all predecessors of states
in Uj (which includes the set of allUj-attractable states). Furthermore, one can use the value
ρj−1(v) (i.e., the valueρ(v) in the (j−1) iteration) for computing the valueρj(v) (i.e. the value
ρ(v) in the j-th iteration). Indeed, ifv ′ has been chosen in step (3) of the (j−1) iteration,ρj(v)
may differ fromρj−1(v) only if there is an edgee = (v,σ , v ′) ∈ E. In that case

ρj(v) =
�
�
� max { ρj−1(v) , λ j−1(v ′) + l(e) }

min { ρj−1(v) , λ j−1(v ′)+l(e) }

otherwise

if Eu ∩ E (v) = ∅

We assumed here thatG has no parallel edges since it makes no sense to have such edges. Since
v ′ has at most |V | predecessors, steps (3) and (2) can be completed in timeO ( |V | ). Thus, the

whole algorithm is ofO ( |V | 2) complexity.

Example 4.1 Consider the processG described in Figure 4.1. If algorithm 4.1 is applied, the
selections in step (3) will be in the following order:v3 , v1 , v2 and v0. The distances from
v3 , v1 , v2 andvo from A are, respectively, 2, 10, 11 and 12. The supervisor specified by (4.5)
disablesα at vo, β at v1, δ at v2, andγat v3. �

Example 4.2 Consider again the manufacturing systemG of example 2.2. Figure 4.2 shows
the closed-loop processS/G, whereS is determined by (4.5) in algorithm 4.1. The numbers
attached to the states are the valuesλ(v) (see step (4)), indicating the minimal distances fromv to
A.

5. Optimal Attraction and Negative Edge Weights

So far we assumed that the weights associated with the edges ofG are positive. However,
this may not be the case in certain application (e.g., whenG models a discrete event process in
the area of economics). The question now of interest is whether previous sections results
concerning minimal restrictive optimal supervisors remain valid if negative weights are allowed.

It turns out that in contrary to the case of positive weights, a solution for OAP need not
exist. Consider the process of Figure 5.1. It is easily seen thatm(v1 , A) = 2 andm(v2 , A) = 3.
In fact, the supervisorsS 1 andS 2, described in Figure 5.2, implement these minimal distances,
separately. However, althoughS 1(S 2) implement minimal distance attraction fromv1(v2), there
is no optimal supervisor achievingm(v1 , A) and m(v2 , A) simultaneously. It is worth noting
that the conjunction supervisorS 1 ∧ S 2 does not solve OAP, as well as AP; in fact,
( (S 1 ∧ S 2 ) / G) =G. �

The following proposition shows that the length ofG’s cycles (the length of a cycle is the
sum of its edges’ length) is crucial in solving OAP.

Proposition 5.1 If the length of every cycle inG−A is positive, OAP is solvable and has a
minimally restrictive solution.
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This restriction on the length ofG’s cycles is not necessary, as it is shown in Figure 5.3.
Figure 5.3(a) is the processG, whereas 5.3(b) is the closed-loop processS/G with S being the
minimal restrictive optimal supervisor. This supervisor disablesβ at v1 andα at v2.

Algorithm 4.1, which a natural extension of the algorithm in [1, section 5], is not applicable
if negative edge lengths are allowed; lemmas 4.2-4.4 still hold, but lemma 4.5 does not. Next, an
algorithm for synthesizing the minimally restrictive solution of OAP is described. it allows
negative edge lengths, but does not allow a cycle whose length is nonpositive.

Algorithm 5.2

(1) Let

(5.1)λ(v) =
�
�
�∞
0

otherwise

if v ∈ A
.

(2) As long as there is a statev ∉ A such thatρ(v) < λ(v), where

ρ(v) =
�
�
� max { λ(v ′)+l(e) | e=(v,σ,v ′) ∈ Eu ∩ E(v) }

min { λ(v ′)+l(e) | e=(v,σ,v ′) ∈ E(v) }

otherwise

if Eu ∩ E(v) = ∅
(5.3)

(5.2)

let λ(v) = ρ(v).

(3) Upon termination, let a supervisorS be determined as

(5.4)∀ v ∈ A, S(v) = { σ ∈ Σ c | ——
—

� (v,σ,v ′) ∈ E s.t. v ′ ∉ A } .

(5.5)∀ v ∈ V−A, S (v) = { σ ∈ Σ c | ——
—

� e=(v,σ,v ′) ∈ E s.t. λ(v) < λ(v ′)+l(e) } .

�

For our purposes∞+l = ∞ for everyl ∈ IRR.

For showing termination of algorithm 5.2, we need the following lemma. LetAj be the set
of all statesv whose valueλ(v) is finite at the end of thej-th iteration.

Lemma 5.3 For everyv ∈ Aj (i.e., λ(v) is finite) there is a simple path fromv to A whose
length isλ(v).

Since each valueλ(v) corresponds to at least one simple path fromv to A, and since the
number of simple paths in a finite digraph is finite, the number of values possible forλ(v) is
finite. Thus algorithm 5.2 must terminate.

There is a special relation between algorithms 5.2 and 4.1: the valueρ(v) of a state
v ∈ V−Aj (whereAj is the current set of statesw whose valuesλ(w) are finite) is finite iffv is
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Aj-attractable. This relation is explained as follows. IfEu ∩ E(v) = ∅ (i.e., no uncontrolled
transitions emanatev), ρ(v) is finite iff (see (5.2))v has a successor inAj iff (see (4.1) and (4.2))
v is Aj-attractable. If, however,Eu ∩ E (v)≠ ∅ , ρ(v) is finite iff (5.3) iff δG(v,Σu) ⊆ Aj iff v is Aj

attractable. The consequence of this relation is that the setsAj of algorithm 5.2 and the setsUj of
algorithm 4.1 (or more precisely, the setsUj of the algorithm in [1, section 5]) are constructed
according to the same rule, namely, augment a new statev ∈ V−Aj iff v is Aj-attractable. Thus
we have:

Lemma 5.4 Upon termination of algorithm 5.2, the set of all statesv whose valueλ(v) is finite
is the region of weak attraction,ΩG(A).

Recall thatA is assumed to be a global weak attractor (i.e.,ΩG(A) = V), and thus, if
algorithm 5.2 is applied to a processG, we end up with a finite valueλ(v) for everyv ∈ V. Next
we claim thatS, the supervisor synthesized in step (3) of algorithm 5.2, indeed implements global
strong attraction. That is,

Lemma 5.5 Let S be determined by (5.4) and (5.5). Then

A ⇐
S/ G

.

The next lemma states thatS (as determined by (5.4) and (5.5)) is an optimal supervisor,
and that each valueλ(v) , v ∈ V, is the minimal distance fromv to A.

Lemma 5.6 For everyv ∈ V,

λ(v) = dS/ G (v , A),

and

λ(v) =m(v , A) .

It follows by lemmas 5.5 and 5.6 that the supervisorS constructed by algorithm 5.2 is a
solution of OAP. Moreover, it is minimally restrictive since (see (5.5)) enabling any transition
e = (v,σ , v ′), with λ(v) < λ(v ′) + l(e), will violate the requirement of minimal distance attraction
from v. Thus we have:

Proposition 5.7 AssumingG−A has no nonpositive length cycles, the supervisor synthesized
by algorithm 5.2 is the minimally restrictive solution of OAP.

For evaluating the complexity of algorithm 5.2 we assume that it is executed as follows.
Order the states:v1 , v2 , . . . , v |V−A | , wherevi ∈ V−A. Now perform step (2) by first checking
v1, then v2, etc., and improving the valuesλ(vi) accordingly. The computation ofρ(v),
∀ v ∈ V, is of O( |E | ) complexity. After the first sweep, go through additional sweeps, until an

entire sweep produces no improvement. By lemma 5.3, this process will terminate. Furthermore,
if in S/G (whereS is the supervisor synthesized by algorithm 5.2) a longest path fromv to A
consists ofn edges, then by the end of then-th sweep,v will have its final value; this can be
proved by induction onn. Sincen ≤ |V | , the whole algorithm is of 0( |V | . |E | ) complexity.
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Moreover, if by the |V | -th sweep any improvement of a label takes place thenG−A contains a
negative length cycle.

Example 5.1 Consider the processG of Figure 5.1. If algorithm 5.2 is executed as explained
above, the valuesρ(v) and λ(v) will be as described in Table 5.5. Upon termination, the
supervisorS, determined by (5.5), disablesα at vo, β andρ at v1, δ at v2, andφat v3. �

6. Conclusion

The problem of synthesizing optimal supervisors for attraction (or stabilization) of
discrete-event processes has been defined and investigated. Given a processG, a supervisorS
stabilizingG and a statev, a performance measure has been chosen to be the cost (or distance) of
the worst-case execution of the supervised processS/G, initialized at statev. Conditions
guaranteeing the existence of optimal (and minimally restrictive) supervisors have been provided,
as well as efficient algorithms (4.1 and 5.2) for their synthesis. The first algorithm is based on the
synthesis procedure presented in [1], and it is suitable only for positive edge weights, whereas the
second allows negative weights in the expense of more computations.

Verification and synthesis procedures for related problems can be derived from this work.
For example, given a processG and a statev in the region of strong attraction, the distance fromv
to the set of target states can be computed by a version of algorithm 4.1. In fact, this problem can
be solved by assuming that all events are uncontrolled and then using algorithm 4.1. Other
examples are synthesizing supervisors achieving optimal attraction within a prespecified region
of states (i.e., for each illegal initial state there is a subset of states whichG may traverse in its
way to the target states), or optimal attraction in processes with state weights in addition to edge
weights. Solving the weighted attraction problem with respect to other optimality criteria (such
as average-case execution or most probable execution) is an interesting topic for further research.
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